Solved

Use the Formulas i=1ni=n(n+1)2,i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} , And i=1ni3=[n(n+1)2]2\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}

Question 23

Multiple Choice

Use the formulas i=1ni=n(n+1) 2,i=1ni2=n(n+1) (2n+1) 6\sum_{i=1}^{n} i=\frac{n(n+1) }{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1) (2 n+1) }{6} , and i=1ni3=[n(n+1) 2]2\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1) }{2}\right]^{2} to find the sum.
-Find the sum of the first 70 cubed positive integers.


A) 24,700,90024,700,900
B) 116,795
C) 12,350,45012,350,450
D) 6,175,2256,175,225

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions