Solved

Graph the Absolute Value Function f(x)=x1f(x)=|x-1| A) Domain (,) (-\infty, \infty)

Question 7

Multiple Choice

Graph the absolute value function. State the domain and range
- f(x) =x1f(x) =|x-1|
 Graph the absolute value function. State the domain and range - f(x) =|x-1|      A)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       B)  Domain:   (-\infty, \infty)   ; Range:   [-1, \infty)       C)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       D)  Domain:   (-\infty, \infty)   ; Range:   [1, \infty)


A) Domain: (,) (-\infty, \infty) ; Range: [0,) [0, \infty)
 Graph the absolute value function. State the domain and range - f(x) =|x-1|      A)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       B)  Domain:   (-\infty, \infty)   ; Range:   [-1, \infty)       C)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       D)  Domain:   (-\infty, \infty)   ; Range:   [1, \infty)

B) Domain: (,) (-\infty, \infty) ; Range: [1,) [-1, \infty)
 Graph the absolute value function. State the domain and range - f(x) =|x-1|      A)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       B)  Domain:   (-\infty, \infty)   ; Range:   [-1, \infty)       C)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       D)  Domain:   (-\infty, \infty)   ; Range:   [1, \infty)

C) Domain: (,) (-\infty, \infty) ; Range: [0,) [0, \infty)
 Graph the absolute value function. State the domain and range - f(x) =|x-1|      A)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       B)  Domain:   (-\infty, \infty)   ; Range:   [-1, \infty)       C)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       D)  Domain:   (-\infty, \infty)   ; Range:   [1, \infty)

D) Domain: (,) (-\infty, \infty) ; Range: [1,) [1, \infty)
 Graph the absolute value function. State the domain and range - f(x) =|x-1|      A)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       B)  Domain:   (-\infty, \infty)   ; Range:   [-1, \infty)       C)  Domain:   (-\infty, \infty)   ; Range:   [0, \infty)       D)  Domain:   (-\infty, \infty)   ; Range:   [1, \infty)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions