Solved

The Rms Velocity (Or Average Velocity) of a Gas Particle μrms=24.9435 TM\mu_{\mathrm{rms}}=\sqrt{\frac{24.9435 \mathrm{~T}}{\mathrm{M}}}

Question 222

Multiple Choice

The rms velocity (or average velocity) of a gas particle in meters per second is given by the formula μrms=24.9435 TM\mu_{\mathrm{rms}}=\sqrt{\frac{24.9435 \mathrm{~T}}{\mathrm{M}}} , where T\mathrm{T} is the absolute temperature in kelvin (T=TC+273) \left(\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273\right) and M\mathrm{M} is the molar mass (mass of 1 mole) of the gas in kilograms. Find the rms velocity for a molecule of Hydrogen (H2) \left(\mathrm{H}_{2}\right) with molar mass 0.002 kilogram at a temperature of 70C70^{\circ} \mathrm{C} . Round to the nearest tenth of a meter per second.


A) 414.1 m/s414.1 \mathrm{~m} / \mathrm{s}
B) 2068.3 m/s2068.3 \mathrm{~m} / \mathrm{s}
C) 1759.9 m/s1759.9 \mathrm{~m} / \mathrm{s}
D) 934.4 m/s934.4 \mathrm{~m} / \mathrm{s}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions