Solved

The Length of the Diagonal of a Box Is Given D=L2+W2+H2D=\sqrt{\mathrm{L}^{2}+\mathrm{W}^{2}+\mathrm{H}^{2}}

Question 233

Multiple Choice

The length of the diagonal of a box is given by D=L2+W2+H2D=\sqrt{\mathrm{L}^{2}+\mathrm{W}^{2}+\mathrm{H}^{2}} where L,W\mathrm{L}, \mathrm{W} , and H\mathrm{H} are the length, width, and height of the box. Find the length of the diagonal, D, of a box that is 2ft2 \mathrm{ft} long, 2ft2 \mathrm{ft} high, and 4ft4 \mathrm{ft} wide. Give the exact value.


A) 8ft8 \mathrm{ft}
B) 26ft2 \sqrt{6} \mathrm{ft}
C) 16ft16 \mathrm{ft}
D) 4ft4 \mathrm{ft}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions