Solved

Solve the Polynomial Inequality y=x3+4x2+x6y=x^{3}+4 x^{2}+x-6 To Solve x3+4x2+x60x^{3}+4 x^{2}+x-6 \leq 0

Question 197

Multiple Choice

Solve the polynomial inequality. Express your solution on a number line using interval notation.
-Use the graph of y=x3+4x2+x6y=x^{3}+4 x^{2}+x-6 to solve x3+4x2+x60x^{3}+4 x^{2}+x-6 \leq 0
 Solve the polynomial inequality.  Express your solution on a number line using interval notation. -Use the graph of  y=x^{3}+4 x^{2}+x-6  to solve  x^{3}+4 x^{2}+x-6 \leq 0      A)    [-3,-2] \cup[1, \infty)      B)    (-3,-2)  \cup(1, \infty)      C)    (-\infty,-3] \cup[-2,1]     D)    (-\infty,-3)  \cup(-2,1)


A) [3,2][1,) [-3,-2] \cup[1, \infty)
 Solve the polynomial inequality.  Express your solution on a number line using interval notation. -Use the graph of  y=x^{3}+4 x^{2}+x-6  to solve  x^{3}+4 x^{2}+x-6 \leq 0      A)    [-3,-2] \cup[1, \infty)      B)    (-3,-2)  \cup(1, \infty)      C)    (-\infty,-3] \cup[-2,1]     D)    (-\infty,-3)  \cup(-2,1)
B) (3,2) (1,) (-3,-2) \cup(1, \infty)
 Solve the polynomial inequality.  Express your solution on a number line using interval notation. -Use the graph of  y=x^{3}+4 x^{2}+x-6  to solve  x^{3}+4 x^{2}+x-6 \leq 0      A)    [-3,-2] \cup[1, \infty)      B)    (-3,-2)  \cup(1, \infty)      C)    (-\infty,-3] \cup[-2,1]     D)    (-\infty,-3)  \cup(-2,1)
C) (,3][2,1] (-\infty,-3] \cup[-2,1]
 Solve the polynomial inequality.  Express your solution on a number line using interval notation. -Use the graph of  y=x^{3}+4 x^{2}+x-6  to solve  x^{3}+4 x^{2}+x-6 \leq 0      A)    [-3,-2] \cup[1, \infty)      B)    (-3,-2)  \cup(1, \infty)      C)    (-\infty,-3] \cup[-2,1]     D)    (-\infty,-3)  \cup(-2,1)
D) (,3) (2,1) (-\infty,-3) \cup(-2,1)
 Solve the polynomial inequality.  Express your solution on a number line using interval notation. -Use the graph of  y=x^{3}+4 x^{2}+x-6  to solve  x^{3}+4 x^{2}+x-6 \leq 0      A)    [-3,-2] \cup[1, \infty)      B)    (-3,-2)  \cup(1, \infty)      C)    (-\infty,-3] \cup[-2,1]     D)    (-\infty,-3)  \cup(-2,1)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions