Solved

Solve the Rational Inequality (x1)(3x)(x2)20\frac{(x-1)(3-x)}{(x-2)^{2}} \leq 0 A) (,3](2,1)[1,) (-\infty,-3] \cup(-2,-1) \cup[1, \infty)

Question 75

Multiple Choice

Solve the rational inequality. Express your solution on a number line using interval notation.
- (x1) (3x) (x2) 20\frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0
 Solve the rational inequality. Express your solution on a number line using interval notation. - \frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0    A)    (-\infty,-3] \cup(-2,-1)  \cup[1, \infty)      B)    (-\infty, 1)  \cup(3, \infty)      C)    (-\infty, 1] \cup[3, \infty)      D)    (-\infty,-3)  \cup(-1, \infty)


A) (,3](2,1) [1,) (-\infty,-3] \cup(-2,-1) \cup[1, \infty)
 Solve the rational inequality. Express your solution on a number line using interval notation. - \frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0    A)    (-\infty,-3] \cup(-2,-1)  \cup[1, \infty)      B)    (-\infty, 1)  \cup(3, \infty)      C)    (-\infty, 1] \cup[3, \infty)      D)    (-\infty,-3)  \cup(-1, \infty)
B) (,1) (3,) (-\infty, 1) \cup(3, \infty)
 Solve the rational inequality. Express your solution on a number line using interval notation. - \frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0    A)    (-\infty,-3] \cup(-2,-1)  \cup[1, \infty)      B)    (-\infty, 1)  \cup(3, \infty)      C)    (-\infty, 1] \cup[3, \infty)      D)    (-\infty,-3)  \cup(-1, \infty)
C) (,1][3,) (-\infty, 1] \cup[3, \infty)
 Solve the rational inequality. Express your solution on a number line using interval notation. - \frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0    A)    (-\infty,-3] \cup(-2,-1)  \cup[1, \infty)      B)    (-\infty, 1)  \cup(3, \infty)      C)    (-\infty, 1] \cup[3, \infty)      D)    (-\infty,-3)  \cup(-1, \infty)
D) (,3) (1,) (-\infty,-3) \cup(-1, \infty)
 Solve the rational inequality. Express your solution on a number line using interval notation. - \frac{(x-1) (3-x) }{(x-2) ^{2}} \leq 0    A)    (-\infty,-3] \cup(-2,-1)  \cup[1, \infty)      B)    (-\infty, 1)  \cup(3, \infty)      C)    (-\infty, 1] \cup[3, \infty)      D)    (-\infty,-3)  \cup(-1, \infty)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions