Solved

Rew Rite as a Single Logarithm 6log(x+3)4log(x2+4)+15logy6 \log (x+3)-4 \log \left(x^{2}+4\right)+\frac{1}{5} \log y

Question 120

Multiple Choice

Rew rite as a single logarithm. A ssume all variables represent positive real numbers.
- 6log(x+3) 4log(x2+4) +15logy6 \log (x+3) -4 \log \left(x^{2}+4\right) +\frac{1}{5} \log y


A) log(x+3) 6(x2+4) 4y5\log \frac{(\mathrm{x}+3) ^{6}\left(\mathrm{x}^{2}+4\right) ^{4}}{\sqrt[5]{\mathrm{y}}}
B) 245log(x+3) (x2+4) y\frac{24}{5} \log \frac{(\mathrm{x}+3) \left(\mathrm{x}^{2}+4\right) }{\mathrm{y}}
C) log(x+3) 6y5(x2+4) 4\log \frac{(x+3) ^{6} \sqrt[5]{y}}{\left(x^{2}+4\right) ^{4}}
D) 115log(x+3) yx2+4\frac{11}{5} \log \frac{(\mathrm{x}+3) \mathrm{y}}{\mathrm{x}^{2}+4}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions