Solved

Suppose for Some Base b>0(b1)b>0(b \neq 1) That logb2=A,logb3=B,logb5=C\log _{b} 2=A, \log _{b} 3=B, \log _{b} 5=C

Question 30

Multiple Choice

Suppose for some base b>0(b1) b>0(b \neq 1) that logb2=A,logb3=B,logb5=C\log _{b} 2=A, \log _{b} 3=B, \log _{b} 5=C , and logb7=D\log _{b} 7=D . Express the given logarithms in terms of A, B, C, or D.
- logb21\log _{b} 21


A) B+DB+D
B) B+C\mathrm{B}+\mathrm{C}
C) A+BA+B
D) A+DA+D

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions