Solved

Suppose for Some Base b>0(b1)b>0(b \neq 1) That logb2=A,logb3=B,logb5=C\log _{b} 2=A, \log _{b} 3=B, \log _{b} 5=C

Question 37

Multiple Choice

Suppose for some base b>0(b1) b>0(b \neq 1) that logb2=A,logb3=B,logb5=C\log _{b} 2=A, \log _{b} 3=B, \log _{b} 5=C , and logb7=D\log _{b} 7=D . Express the given logarithms in terms of A, B, C, or D.
- logb(1343) \log _{b}\left(\frac{1}{343}\right)


A) 3D3 \mathrm{D}
B) - 3D
C) 3 A3 \mathrm{~A}
D) - 3A

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions