Solved

For the Given Function f(x)f(x) , Find f1(x)f^{-1}(x) And Graph the Function and Its Inverse

Question 291

Multiple Choice

For the given function f(x) f(x) , find f1(x) f^{-1}(x) and graph the function and its inverse.
- f(x) =(52) x f(x) =\left(\frac{5}{2}\right) ^{x}
 For the given function  f(x)  , find  f^{-1}(x)   and graph the function and its inverse. -  f(x) =\left(\frac{5}{2}\right) ^{x}     A)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     B)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     C)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     D)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x


A) f(x) =(52) x,f1(x) =log5/2x f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
 For the given function  f(x)  , find  f^{-1}(x)   and graph the function and its inverse. -  f(x) =\left(\frac{5}{2}\right) ^{x}     A)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     B)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     C)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     D)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
B) f(x) =(52) x,f1(x) =log5/2x f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
 For the given function  f(x)  , find  f^{-1}(x)   and graph the function and its inverse. -  f(x) =\left(\frac{5}{2}\right) ^{x}     A)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     B)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     C)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     D)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
C) f(x) =(52) x,f1(x) =log5/2x f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
 For the given function  f(x)  , find  f^{-1}(x)   and graph the function and its inverse. -  f(x) =\left(\frac{5}{2}\right) ^{x}     A)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     B)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     C)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     D)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
D) f(x) =(52) x,f1(x) =log5/2x f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x
 For the given function  f(x)  , find  f^{-1}(x)   and graph the function and its inverse. -  f(x) =\left(\frac{5}{2}\right) ^{x}     A)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     B)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     C)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x     D)    f(x) =\left(\frac{5}{2}\right) ^{x}, f^{-1}(x) =\log _{5 / 2} x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions