Solved

Find the Standard-Form Equation of the Hyperbola Whose Graph Is (x2)216(y+4)29=1\frac{(\mathrm{x}-2)^{2}}{16}-\frac{(\mathrm{y}+4)^{2}}{9}=1

Question 41

Multiple Choice

Find the standard-form equation of the hyperbola whose graph is shown.
- Find the standard-form equation of the hyperbola whose graph is shown. -   A)   \frac{(\mathrm{x}-2) ^{2}}{16}-\frac{(\mathrm{y}+4) ^{2}}{9}=1  B)   \frac{(x+2) ^{2}}{16}-\frac{(y-4) ^{2}}{9}=1  C)   \frac{(x+2) ^{2}}{9}-\frac{(y-4) ^{2}}{16}=1  D)   \frac{(\mathrm{x}-2) ^{2}}{9}-\frac{(\mathrm{y}+4) ^{2}}{16}=1


A) (x2) 216(y+4) 29=1\frac{(\mathrm{x}-2) ^{2}}{16}-\frac{(\mathrm{y}+4) ^{2}}{9}=1
B) (x+2) 216(y4) 29=1\frac{(x+2) ^{2}}{16}-\frac{(y-4) ^{2}}{9}=1
C) (x+2) 29(y4) 216=1\frac{(x+2) ^{2}}{9}-\frac{(y-4) ^{2}}{16}=1
D) (x2) 29(y+4) 216=1\frac{(\mathrm{x}-2) ^{2}}{9}-\frac{(\mathrm{y}+4) ^{2}}{16}=1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions