menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Functions Modeling Change
  4. Exam
    Exam 5: Logarithmic Functions
  5. Question
    Does\(\ln \left(x^{4} e^{-\ln \sqrt{x}}\right)=\frac{7}{2} \ln x\)
Solved

Does ln⁡(x4e−ln⁡x)=72ln⁡x\ln \left(x^{4} e^{-\ln \sqrt{x}}\right)=\frac{7}{2} \ln xln(x4e−lnx​)=27​lnx

Question 3

Question 3

True/False

Does ln⁡(x4e−ln⁡x)=72ln⁡x\ln \left(x^{4} e^{-\ln \sqrt{x}}\right)=\frac{7}{2} \ln xln(x4e−lnx​)=27​lnx ?

Correct Answer:

verifed

Verified

Related Questions

Q1: Let <span class="ql-formula" data-value="n=\log p"><span

Q2: Let <span class="ql-formula" data-value="n=\log p"><span

Q4: If <span class="ql-formula" data-value="Q=\frac{1}{7} e^{0.062

Q5: Evaluate <span class="ql-formula" data-value="e^{\ln \left(5^{2}\right)}"><span

Q6: Find the domain of the function

Q7: A town with an initial population of

Q8: Consider the function <span class="ql-formula"

Q9: Find a possible formula for the following

Q10: The following table gives <span

Q11: What annual interest rate, compounded monthly, is

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines