Solved

The Inverse of a Matrix A\mathbf{A} , Denoted By A1\mathbf{A}^{-1} , Is Such That If

Question 25

True/False

The inverse of a matrix A\mathbf{A} , denoted by A1\mathbf{A}^{-1} , is such that if v=Au\vec{v}=\mathbf{A} \vec{u} , then u=A1v\vec{u}=\mathbf{A}^{-1} \vec{v} . For a matrix A=(abcd)\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) , the inverse A1\mathbf{A}^{-1} is given by A1=1D(dbca)\mathbf{A}^{-1}=\frac{1}{D}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) , where D=adbcA1D=a d-b c \mathbf{A}^{-1} is undefined if D=0.D=0 . Let A=(1122)\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right) . Does A1=14(2211)?\mathbf{A}^{-1}=\frac{1}{-4}\left(\begin{array}{cc}-2 & -2 \\ -1 & 1\end{array}\right) ?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions