Solved

Factor
- n31512n^{3}-\frac{1}{512} A) (n164)(n2+18n+18)\left(n-\frac{1}{64}\right)\left(n^{2}+\frac{1}{8} n+\frac{1}{8}\right) B) (n+164)(n218n+18)\left(n+\frac{1}{64}\right)\left(n^{2}-\frac{1}{8} n+\frac{1}{8}\right) C) (n+18)(n218n+164)\left(n+\frac{1}{8}\right)\left(n^{2}-\frac{1}{8} n+\frac{1}{64}\right) D) (n18)((n2+18n+164)\left(n-\frac{1}{8}\right)\left(\left(n^{2}+\frac{1}{8} n+\frac{1}{64}\right)\right.

Question 139

Multiple Choice

Factor.
- n31512n^{3}-\frac{1}{512}


A) (n164) (n2+18n+18) \left(n-\frac{1}{64}\right) \left(n^{2}+\frac{1}{8} n+\frac{1}{8}\right)
B) (n+164) (n218n+18) \left(n+\frac{1}{64}\right) \left(n^{2}-\frac{1}{8} n+\frac{1}{8}\right)
C) (n+18) (n218n+164) \left(n+\frac{1}{8}\right) \left(n^{2}-\frac{1}{8} n+\frac{1}{64}\right)
D) (n18) ((n2+18n+164) \left(n-\frac{1}{8}\right) \left(\left(n^{2}+\frac{1}{8} n+\frac{1}{64}\right) \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions