Solved

Use the Properties of Parallel Lines to Solve the Problem BCDE.mABC=45\overline{\mathrm{BC}} \| \overline{\mathrm{DE}} . \mathrm{m} \angle \mathrm{ABC}=45^{\circ}

Question 159

Multiple Choice

Use the properties of parallel lines to solve the problem.
-In the figure, BCDE.mABC=45\overline{\mathrm{BC}} \| \overline{\mathrm{DE}} . \mathrm{m} \angle \mathrm{ABC}=45^{\circ} . Given this information, find the measures of as many other angles as possible.
 Use the properties of parallel lines to solve the problem. -In the figure,  \overline{\mathrm{BC}} \| \overline{\mathrm{DE}} . \mathrm{m} \angle \mathrm{ABC}=45^{\circ} . Given this information, find the measures of as many other angles as possible.   A)   \mathrm{m} \angle \mathrm{ADE}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ECB}=135^{\circ}  B)   \mathrm{m} \angle \mathrm{ADE}=\mathrm{m} \angle \mathrm{ACB}=\mathrm{m} \angle \mathrm{AED}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ECB}=135^{\circ}  C)   \mathrm{m} \angle \mathrm{ADE}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=135^{\circ}  D)   \mathrm{m} \angle \mathrm{ADE}=\mathrm{m} \angle \mathrm{ACB}=\mathrm{m} \angle \mathrm{AED}=45^{\circ}


A) mADE=45,mDBC=mECB=135\mathrm{m} \angle \mathrm{ADE}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ECB}=135^{\circ}
B) mADE=mACB=mAED=45,mDBC=mECB=135\mathrm{m} \angle \mathrm{ADE}=\mathrm{m} \angle \mathrm{ACB}=\mathrm{m} \angle \mathrm{AED}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ECB}=135^{\circ}
C) mADE=45,mDBC=135\mathrm{m} \angle \mathrm{ADE}=45^{\circ}, \mathrm{m} \angle \mathrm{DBC}=135^{\circ}
D) mADE=mACB=mAED=45\mathrm{m} \angle \mathrm{ADE}=\mathrm{m} \angle \mathrm{ACB}=\mathrm{m} \angle \mathrm{AED}=45^{\circ}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions