Solved

Use the Properties of Parallel Lines to Solve the Problem ABCD.mBAE=37\overline{\mathrm{AB}} \| \overline{\mathrm{CD}} . \mathrm{m} \angle \mathrm{BAE}=37^{\circ}

Question 194

Multiple Choice

Use the properties of parallel lines to solve the problem.
-In the figure, ABCD.mBAE=37\overline{\mathrm{AB}} \| \overline{\mathrm{CD}} . \mathrm{m} \angle \mathrm{BAE}=37^{\circ} . Given this information, find the measures of as many other angles as possible.
 Use the properties of parallel lines to solve the problem. -In the figure,  \overline{\mathrm{AB}} \| \overline{\mathrm{CD}} . \mathrm{m} \angle \mathrm{BAE}=37^{\circ} . Given this information, find the measures of as many other angles as possible.   A)   \mathrm{m} \angle \mathrm{CDE}=\mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{DCE}=37^{\circ}  B)   \mathrm{m} \angle \mathrm{CDE}=37^{\circ}, \mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{DCE}=53^{\circ}  C)   \mathrm{m} \angle \mathrm{CDE}=37^{\circ}  D)   \mathrm{m} \angle \mathrm{CDE}=37^{\circ}, \mathrm{m} \angle \mathrm{ABD}=143^{\circ}


A) mCDE=mABE=mDCE=37\mathrm{m} \angle \mathrm{CDE}=\mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{DCE}=37^{\circ}
B) mCDE=37,mABE=mDCE=53\mathrm{m} \angle \mathrm{CDE}=37^{\circ}, \mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{DCE}=53^{\circ}
C) mCDE=37\mathrm{m} \angle \mathrm{CDE}=37^{\circ}
D) mCDE=37,mABD=143\mathrm{m} \angle \mathrm{CDE}=37^{\circ}, \mathrm{m} \angle \mathrm{ABD}=143^{\circ}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions