Solved

Provide an Appropriate Response ABCZML\triangle \mathrm{ABC} \sim \triangle \mathrm{ZML} A) B)

Question 11

Multiple Choice

Provide an appropriate response.
-For the pair of similar triangles, name the congruent angles and proportional sides.
ABCZML\triangle \mathrm{ABC} \sim \triangle \mathrm{ZML}


A) AM,BZ,CL;ABZM=ACML=BCZL\angle \mathrm{A} \cong \triangle \mathrm{M}, \angle \mathrm{B} \cong \angle \mathrm{Z}, \angle \mathrm{C} \cong \triangle \mathrm{L} ; \frac{\mathrm{AB}}{\mathrm{ZM}}=\frac{\mathrm{AC}}{\mathrm{ML}}=\frac{\mathrm{BC}}{\mathrm{ZL}}
B) AL,BM,CZ;ABML=ACZL=BCZM\angle \mathrm{A} \cong \triangle \mathrm{L}, \angle \mathrm{B} \cong \triangle \mathrm{M}, \angle \mathrm{C} \cong \angle \mathrm{Z} ; \frac{\mathrm{AB}}{\mathrm{ML}}=\frac{\mathrm{AC}}{\mathrm{ZL}}=\frac{\mathrm{BC}}{\mathrm{ZM}}
C) AZ,BM,CL;ABZM=ACZL=BCML\angle \mathrm{A} \cong \angle \mathrm{Z}, \angle \mathrm{B} \cong \triangle \mathrm{M}, \angle \mathrm{C} \cong \triangle \mathrm{L} ; \frac{\mathrm{AB}}{\mathrm{ZM}}=\frac{\mathrm{AC}}{\mathrm{ZL}}=\frac{\mathrm{BC}}{\mathrm{ML}}
D) AZ,BL,CM;ABZL=ACZM=BCML\angle \mathrm{A} \cong \angle \mathrm{Z}, \angle \mathrm{B} \cong \angle \mathrm{L}, \angle \mathrm{C} \cong \triangle \mathrm{M} ; \frac{\mathrm{AB}}{\mathrm{ZL}}=\frac{\mathrm{AC}}{\mathrm{ZM}}=\frac{\mathrm{BC}}{\mathrm{ML}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions