Solved

Solve Using the Addition Principle 7n3>6n+37 n-3>6 n+3 A) {nn0}\{\mathrm{n} \mid \mathrm{n} \geq 0\}

Question 224

Multiple Choice

Solve using the addition principle. Graph and write set-builder notation for the answer.
- 7n3>6n+37 n-3>6 n+3  Solve using the addition principle. Graph and write set-builder notation for the answer. - 7 n-3>6 n+3    A)   \{\mathrm{n} \mid \mathrm{n} \geq 0\}    B)   \{\mathrm{n} \mid \mathrm{n}>6\}    C)   \{\mathrm{n} \mid \mathrm{n} \leq 0\}    D)   \{  n  \mid  n  <6\}


A) {nn0}\{\mathrm{n} \mid \mathrm{n} \geq 0\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 7 n-3>6 n+3    A)   \{\mathrm{n} \mid \mathrm{n} \geq 0\}    B)   \{\mathrm{n} \mid \mathrm{n}>6\}    C)   \{\mathrm{n} \mid \mathrm{n} \leq 0\}    D)   \{  n  \mid  n  <6\}
B) {nn>6}\{\mathrm{n} \mid \mathrm{n}>6\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 7 n-3>6 n+3    A)   \{\mathrm{n} \mid \mathrm{n} \geq 0\}    B)   \{\mathrm{n} \mid \mathrm{n}>6\}    C)   \{\mathrm{n} \mid \mathrm{n} \leq 0\}    D)   \{  n  \mid  n  <6\}
C) {nn0}\{\mathrm{n} \mid \mathrm{n} \leq 0\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 7 n-3>6 n+3    A)   \{\mathrm{n} \mid \mathrm{n} \geq 0\}    B)   \{\mathrm{n} \mid \mathrm{n}>6\}    C)   \{\mathrm{n} \mid \mathrm{n} \leq 0\}    D)   \{  n  \mid  n  <6\}
D) {\{ n \mid n <6}<6\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 7 n-3>6 n+3    A)   \{\mathrm{n} \mid \mathrm{n} \geq 0\}    B)   \{\mathrm{n} \mid \mathrm{n}>6\}    C)   \{\mathrm{n} \mid \mathrm{n} \leq 0\}    D)   \{  n  \mid  n  <6\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions