Solved

Solve Using the Addition Principle x+17>47x+\frac{1}{7}>\frac{4}{7} A) {xx>37}\left\{|x| x>-\frac{3}{7}\right\} B) {xx>37}\left\{|x| x>\frac{3}{7}\right\} C) {{xx<47}\left\{\left\{x \mid x<\frac{4}{7}\right\}\right.

Question 204

Multiple Choice

Solve using the addition principle. Graph and write set-builder notation for the answer.
- x+17>47x+\frac{1}{7}>\frac{4}{7}  Solve using the addition principle. Graph and write set-builder notation for the answer. - x+\frac{1}{7}>\frac{4}{7}    A)   \left\{|x| x>-\frac{3}{7}\right\}    B)   \left\{|x| x>\frac{3}{7}\right\}    C)   \left\{\left\{x \mid x<\frac{4}{7}\right\}\right.    D)   \left\{|x| x>\frac{3}{7}\right\}


A) {xx>37}\left\{|x| x>-\frac{3}{7}\right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x+\frac{1}{7}>\frac{4}{7}    A)   \left\{|x| x>-\frac{3}{7}\right\}    B)   \left\{|x| x>\frac{3}{7}\right\}    C)   \left\{\left\{x \mid x<\frac{4}{7}\right\}\right.    D)   \left\{|x| x>\frac{3}{7}\right\}
B) {xx>37}\left\{|x| x>\frac{3}{7}\right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x+\frac{1}{7}>\frac{4}{7}    A)   \left\{|x| x>-\frac{3}{7}\right\}    B)   \left\{|x| x>\frac{3}{7}\right\}    C)   \left\{\left\{x \mid x<\frac{4}{7}\right\}\right.    D)   \left\{|x| x>\frac{3}{7}\right\}
C) {{xx<47}\left\{\left\{x \mid x<\frac{4}{7}\right\}\right.
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x+\frac{1}{7}>\frac{4}{7}    A)   \left\{|x| x>-\frac{3}{7}\right\}    B)   \left\{|x| x>\frac{3}{7}\right\}    C)   \left\{\left\{x \mid x<\frac{4}{7}\right\}\right.    D)   \left\{|x| x>\frac{3}{7}\right\}
D) {xx>37}\left\{|x| x>\frac{3}{7}\right\}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - x+\frac{1}{7}>\frac{4}{7}    A)   \left\{|x| x>-\frac{3}{7}\right\}    B)   \left\{|x| x>\frac{3}{7}\right\}    C)   \left\{\left\{x \mid x<\frac{4}{7}\right\}\right.    D)   \left\{|x| x>\frac{3}{7}\right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions