Solved

XLX_{L} Is I=ER+(XLXC)I=\frac{E}{R+\left(X_{L}-X_{C}\right)} Use This Law to Solve the Problem RR

Question 303

Multiple Choice

    X_{L}  is  I=\frac{E}{R+\left(X_{L}-X_{C}\right) } . . Use this law to solve the problem. -Find  R  if  I=6-2 i, E=5+5 i, X_{L}=2 , and  X_{C}=2 . A)   \frac{1}{2}+\frac{1}{2} \mathrm{i}  B)   \frac{1}{2}+\mathrm{i}  C)   1+\frac{1}{2} \mathrm{i}  D)   1+\mathrm{i} XLX_{L} is I=ER+(XLXC) I=\frac{E}{R+\left(X_{L}-X_{C}\right) } . . Use this law to solve the problem.
-Find RR if I=62i,E=5+5i,XL=2I=6-2 i, E=5+5 i, X_{L}=2 , and XC=2X_{C}=2 .


A) 12+12i\frac{1}{2}+\frac{1}{2} \mathrm{i}
B) 12+i\frac{1}{2}+\mathrm{i}
C) 1+12i1+\frac{1}{2} \mathrm{i}
D) 1+i1+\mathrm{i}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions