Solved

Solve the Inequality 7x49<677\frac{7 x-4}{9}<\frac{67}{7} A) (677,) \left(\frac{67}{7}, \infty\right) B) (,63149) \left(-\infty, \frac{631}{49}\right)

Question 254

Multiple Choice

Solve the inequality. Give the solution set in both interval and graph forms.
- 7x49<677\frac{7 x-4}{9}<\frac{67}{7}
 Solve the inequality. Give the solution set in both interval and graph forms. - \frac{7 x-4}{9}<\frac{67}{7}    A)    \left(\frac{67}{7}, \infty\right)       B)    \left(-\infty, \frac{631}{49}\right)       C)    \left(\frac{631}{49}, \infty\right)        D)    \left(-\infty, \frac{67}{7}\right)


A) (677,) \left(\frac{67}{7}, \infty\right)
 Solve the inequality. Give the solution set in both interval and graph forms. - \frac{7 x-4}{9}<\frac{67}{7}    A)    \left(\frac{67}{7}, \infty\right)       B)    \left(-\infty, \frac{631}{49}\right)       C)    \left(\frac{631}{49}, \infty\right)        D)    \left(-\infty, \frac{67}{7}\right)

B) (,63149) \left(-\infty, \frac{631}{49}\right)
 Solve the inequality. Give the solution set in both interval and graph forms. - \frac{7 x-4}{9}<\frac{67}{7}    A)    \left(\frac{67}{7}, \infty\right)       B)    \left(-\infty, \frac{631}{49}\right)       C)    \left(\frac{631}{49}, \infty\right)        D)    \left(-\infty, \frac{67}{7}\right)

C) (63149,) \left(\frac{631}{49}, \infty\right)
 Solve the inequality. Give the solution set in both interval and graph forms. - \frac{7 x-4}{9}<\frac{67}{7}    A)    \left(\frac{67}{7}, \infty\right)       B)    \left(-\infty, \frac{631}{49}\right)       C)    \left(\frac{631}{49}, \infty\right)        D)    \left(-\infty, \frac{67}{7}\right)

D) (,677) \left(-\infty, \frac{67}{7}\right)
 Solve the inequality. Give the solution set in both interval and graph forms. - \frac{7 x-4}{9}<\frac{67}{7}    A)    \left(\frac{67}{7}, \infty\right)       B)    \left(-\infty, \frac{631}{49}\right)       C)    \left(\frac{631}{49}, \infty\right)        D)    \left(-\infty, \frac{67}{7}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions