Solved

Use Implicit Differentiation to Find the Derivative Of x+y22xy=4x3\frac{x+y^{2}}{2 x-y}=4 x^{3}

Question 51

Multiple Choice

Use implicit differentiation to find the derivative of x+y22xy=4x3\frac{x+y^{2}}{2 x-y}=4 x^{3} .


A) dydx=24x312x2y+2y2y2x4xy\frac{d y}{d x}=\frac{24 x^{3}-12 x^{2} y+2 y^{2}}{y^{2}-x-4 x y}
B) dydx=4x2(2xy) 2y24xy+y2x\frac{d y}{d x}=\frac{4 x^{2}(2 x-y) ^{2}-y^{2}}{4 x y+y^{2}-x}
C) dydx=12x2(2xy) 2+2y2+y4xy+xy2\frac{d y}{d x}=\frac{12 x^{2}(2 x-y) ^{2}+2 y^{2}+y}{4 x y+x-y^{2}}
D) dydx=4x2(2xy) 22y2y4xy+xy2\frac{d y}{d x}=\frac{4 x^{2}(2 x-y) ^{2}-2 y^{2}-y}{4 x y+x-y^{2}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions