Solved

Find the Derivative Of f(x)=xcos2xf(x)=\frac{x}{\cos 2 x}
A) f(x)=cos2x+xsin2xcos22x=sec2x+xsec2xtan2xf^{\prime}(x)=\frac{\cos 2 x+x \sin 2 x}{\cos ^{2} 2 x}=\sec 2 x+x \sec 2 x \tan 2 x

Question 35

Multiple Choice

Find the derivative of f(x) =xcos2xf(x) =\frac{x}{\cos 2 x} .


A) f(x) =cos2x+xsin2xcos22x=sec2x+xsec2xtan2xf^{\prime}(x) =\frac{\cos 2 x+x \sin 2 x}{\cos ^{2} 2 x}=\sec 2 x+x \sec 2 x \tan 2 x
B) f(x) =cos2xxsin2xcos22x=sec2xxsec2xtan2xf^{\prime}(x) =\frac{\cos 2 x-x \sin 2 x}{\cos ^{2} 2 x}=\sec 2 x-x \sec 2 x \tan 2 x
C) f(x) =cos2x2xsin2xcos22x=sec2x2xsec2xtan2xf^{\prime}(x) =\frac{\cos 2 x-2 x \sin 2 x}{\cos ^{2} 2 x}=\sec 2 x-2 x \sec 2 x \tan 2 x
D) f(x) =cos2x+2xsin2xcos22x=sec2x+2xsec2xtan2xf^{\prime}(x) =\frac{\cos 2 x+2 x \sin 2 x}{\cos ^{2} 2 x}=\sec 2 x+2 x \sec 2 x \tan 2 x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions