Solved

Find a Maclaurin Series Expansion Forf(x) =e3x=e^{3 x}
A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots

Question 20

Multiple Choice

Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .


A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots
B) n=0(3x) nn!=1+3x+9x22!+27x33!+\sum_{n=0}^{\infty} \frac{(3 \mathrm{x}) ^{n}}{n !}=1+3 \mathrm{x}+\frac{9 \mathrm{x}^{2}}{2 !}+\frac{27 \mathrm{x}^{3}}{3 !}+\ldots
C) n=0(3x) n(3n) !=1+3x3!+9x26!+27x39!+\sum_{n=0}^{\infty} \frac{(3 x) ^{n}}{(3 n) !}=1+\frac{3 x}{3 !}+\frac{9 x^{2}}{6 !}+\frac{27 x^{3}}{9 !}+\ldots
D) n=03xnn!=3+3x+3x22!+3x33!+\sum_{n=0}^{\infty} \frac{3 x^{n}}{n !}=3+3 x+\frac{3 x^{2}}{2 !}+\frac{3 x^{3}}{3 !}+\ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions