Solved

How Should ([v3]avg )1/3\left(\left[v^{3}\right]_{\text {avg }}\right)^{1 / 3} Compare To ([v2]avg )1/2\left(\left[v^{2}\right]_{\text {avg }}\right)^{1 / 2}

Question 20

Multiple Choice

How should ([v3]avg ) 1/3\left(\left[v^{3}\right]_{\text {avg }}\right) ^{1 / 3} compare to ([v2]avg ) 1/2\left(\left[v^{2}\right]_{\text {avg }}\right) ^{1 / 2} for an ideal gas?


A) ([v3]avg ) 1/3>([v2]avg ) 1/2\left(\left[v^{3}\right]_{\text {avg }}\right) ^{1 / 3}>\left(\left[v^{2}\right]_{\text {avg }}\right) ^{1 / 2}
B) ([v3]avg ) 1/3=([v2]avg ) 1/2\left(\left[v^{3}\right]_{\text {avg }}\right) ^{1 / 3}=\left(\left[v^{2}\right]_{\text {avg }}\right) ^{1 / 2}
C) ([v3]avg ) 1/3<([v2]avg ) 1/2\left(\left[v^{3}\right]_{\text {avg }}\right) ^{1 / 3}<\left(\left[v^{2}\right]_{\text {avg }}\right) ^{1 / 2}
D) One cannot tell without careful calculation.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions