menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Technical Mathematics
  4. Exam
    Exam 34: Methods of Integration
  5. Question
    Evaluate the Improper Integral\(\int_{3}^{\infty} \frac{d x}{x^{2}-1}\) Round Your Answer to Three Significant Digits
Solved

Evaluate the Improper Integral ∫3∞dxx2−1\int_{3}^{\infty} \frac{d x}{x^{2}-1}∫3∞​x2−1dx​ Round Your Answer to Three Significant Digits

Question 86

Question 86

Short Answer

Evaluate the improper integral: ∫3∞dxx2−1\int_{3}^{\infty} \frac{d x}{x^{2}-1}∫3∞​x2−1dx​ . Round your answer to three significant digits.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q79: Integrate: <span class="ql-formula" data-value="\int 4

Q80: Find the rms value for the

Q81: Integrate: <span class="ql-formula" data-value="\int \log

Q82: Integrate: <span class="ql-formula" data-value="\int_{0}^{\sqrt{5}} \frac{x}{\sqrt{x^{2}+4}}

Q83: Find the average ordinate for the

Q84: Integrate by parts: <span class="ql-formula"

Q85: Integrate: <span class="ql-formula" data-value="\int \sqrt{x^{2}+9}

Q87: Evaluate the improper integral: <span

Q88: Integrate: <span class="ql-formula" data-value="\int\left(e^{2 x}-e^{-2

Q89: Integrate by parts: <span class="ql-formula"

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines