Solved

Verify That the First Four Terms of the Fourier Series

Question 33

Short Answer

Verify that the first four terms of the Fourier series for the full wave rectification of the sine function
f(t)=sin(2πft)f=1 below are: f(t)=2π[12(13cos2πt+115cos4πt+135cos6πt)]f(t)=\sin (2 \pi f t){f=1 \text { below are: }} f(t)=\frac{2}{\pi}\left[1-2\left(\frac{1}{3} \cos 2 \pi t+\frac{1}{15} \cos 4 \pi t+\frac{1}{35} \cos 6 \pi t\right)\right]
 Verify that the first four terms of the Fourier series for the full wave rectification of the sine function  f(t)=\sin (2 \pi f t){f=1 \text { below are: }} f(t)=\frac{2}{\pi}\left[1-2\left(\frac{1}{3} \cos 2 \pi t+\frac{1}{15} \cos 4 \pi t+\frac{1}{35} \cos 6 \pi t\right)\right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions