Solved

Verify That the First Four Terms of the Fourier Series f(t)=121π[sin2πt+12sin4πt+13sin6πt]f(t)=\frac{1}{2}-\frac{1}{\pi}\left[\sin 2 \pi t+\frac{1}{2} \sin 4 \pi t+\frac{1}{3} \sin 6 \pi t\right]

Question 17

Short Answer

Verify that the first four terms of the Fourier series for the sawtooth function below are:
f(t)=121π[sin2πt+12sin4πt+13sin6πt]f(t)=\frac{1}{2}-\frac{1}{\pi}\left[\sin 2 \pi t+\frac{1}{2} \sin 4 \pi t+\frac{1}{3} \sin 6 \pi t\right]
 Verify that the first four terms of the Fourier series for the sawtooth function below are:  f(t)=\frac{1}{2}-\frac{1}{\pi}\left[\sin 2 \pi t+\frac{1}{2} \sin 4 \pi t+\frac{1}{3} \sin 6 \pi t\right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions