Solved

Convert the Constraints into Linear Equations by Using Slack Variables z=x1+2x2+3x3z=x_{1}+2 x_{2}+3 x_{3}

Question 57

Multiple Choice

Convert the constraints into linear equations by using slack variables.
-Maximize z=x1+2x2+3x3z=x_{1}+2 x_{2}+3 x_{3}
Subject to: x1+9x2+3x340x_{1}+9 x_{2}+3 x_{3} \leq 40
6x1+x2+6x350x10,x20,x30\begin{aligned}& 6 x_{1}+x_{2}+6 x_{3} \leq 50 \\& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0\end{aligned}


A) x1+9x2+3x3=s1+40x_{1}+9 x_{2}+3 x_{3}=s_{1}+40
6x1+x2+6x3=s2+506 \mathrm{x}_{1}+\mathrm{x}_{2}+6 \mathrm{x}_{3}=\mathrm{s}_{2}+50
B) x1+9x2+3x3+s1=40x_{1}+9 x_{2}+3 x_{3}+s_{1}=40
6x1+x2+6x3+s2=506 x_{1}+x_{2}+6 x_{3}+s_{2}=50
C) x1+9x2+3x3+s1=40x_{1}+9 x_{2}+3 x_{3}+s_{1}=40
6x1+x2+6x3+s1=506 x_{1}+x_{2}+6 x_{3}+s_{1}=50

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions