Solved

Use the Simplex Method to Solve the Linear Programming Problem z=4x1+2x2\mathrm{z}=4 \mathrm{x}_{1}+2 \mathrm{x}_{2}

Question 13

Multiple Choice

Use the simplex method to solve the linear programming problem.
-Maximize z=4x1+2x2\mathrm{z}=4 \mathrm{x}_{1}+2 \mathrm{x}_{2}
Subject to: 2x1+3x262 x_{1}+3 x_{2} \leq 6
x1+3x24x_{1}+3 x_{2} \leq 4
2x1+2x282 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 8
With x10,x20\quad x_{1} \geq 0, x_{2} \geq 0


A) Maximum is 6 when x1=0,x2=3x_{1}=0, x_{2}=3
B) Maximum is 8 when x1=0,x2=2x_{1}=0, x_{2}=2
C) Maximum is 16 when x1=4,x2=0x_{1}=4, x_{2}=0
D) Maximum is 12 when x1=3,x2=0\mathrm{x}_{1}=3, \mathrm{x}_{2}=0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions