Solved

Use the Simplex Method to Solve the Linear Programming Problem z=7x1+2x2+x3\mathrm{z}=7 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}

Question 116

Multiple Choice

Use the simplex method to solve the linear programming problem.
-Maximize z=7x1+2x2+x3\mathrm{z}=7 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}
Subject to: x1+5x2+7x38x_{1}+5 x_{2}+7 x_{3} \leq 8
x1+4x2+11x39x_{1}+4 x_{2}+11 x_{3} \leq 9
With x10,x20,x30\quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0


A) Maximum is 9 when x1=1,x2=1,x3=0x_{1}=1, x_{2}=1, x_{3}=0
B) Maximum is 56 when x1=8,x2=0,x3=0x_{1}=8, x_{2}=0, x_{3}=0
C) Maximum is 63 when x1=9,x2=0,x3=0x_{1}=9, x_{2}=0, x_{3}=0
D) Maximum is 0 when x1=0,x2=0,x3=8x_{1}=0, x_{2}=0, x_{3}=8

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions