Solved

State the Dual Problem y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , And y3\mathrm{y}_{3} As the Variables y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0

Question 143

Multiple Choice

State the dual problem. Use y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , and y3\mathrm{y}_{3} as the variables. Given: y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0 , and y30\mathrm{y}_{3} \geq 0 .
-Minimize w=2x1+3x2+x3\mathrm{w}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}
Subject to: x1+3x2+2x334 x_{1}+3 x_{2} +2 x_{3}\geq 34
2x1+4x2+3x3592 x_{1}+4 x_{2} +3 x_{3}\geq 59
x10,x2,x30\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} , \mathrm{x}_{3}\geq 0


A) Maximize z=59y1+34y2z=59 y 1+34 y 2
Subject to: 2y1+y222 \mathrm{y}_{1}+\mathrm{y}_{2} \leq 2
4y1+3y234 y_{1}+3 y_{2} \leq 3
3y1+2y213 y_{1}+2 y_{2} \leq 1
B) Maximize z=34y1+59y2z=34 y 1+59 y 2
Subject to: y1+2y22\mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 2
3y1+4y233 y_{1}+4 y_{2} \geq 3
2y1+3y212 y_{1}+3 y_{2} \geq 1
C) Maximize z=59y1+34y2z=59 y 1+34 y 2
Subject to: 2y1+y222 \mathrm{y}_{1}+\mathrm{y}_{2} \geq 2
4y1+3y234 y_{1}+3 y_{2} \geq 3
3y1+2y213 y_{1}+2 y_{2} \geq 1
D) Maximize z=34y1+59y2z=34 y 1+59 y 2
Subject to: y1+2y22\mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 2
3y1+4y233 y_{1}+4 y_{2} \leq 3
2y1+3y212 y_{1}+3 y_{2} \leq 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions