Solved

Convert the Objective Function into a Maximization Function w=y1+3y2+y3+4y4\mathrm{w}=\mathrm{y}_{1}+3 \mathrm{y}_{2}+\mathrm{y}_{3}+4 \mathrm{y}_{4}

Question 179

Multiple Choice

Convert the objective function into a maximization function.
-Minimize
w=y1+3y2+y3+4y4\mathrm{w}=\mathrm{y}_{1}+3 \mathrm{y}_{2}+\mathrm{y}_{3}+4 \mathrm{y}_{4}
Subject to:
y1+y2+y3+y427\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4} \geq 27
2y1+2y2+y3+2y4532 \mathrm{y}_{1}+2 \mathrm{y}_{2}+\mathrm{y}_{3}+2 \mathrm{y}_{4} \geq 53
y10,y20,y30,y40\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0, \mathrm{y}_{3} \geq 0, \mathrm{y}_{4} \geq 0


A) Maximize z=y1+3y2+y3+4y4y5z=y_{1}+3 y_{2}+y_{3}+4 y_{4}-y_{5}
B) Maximize z=y13y2y34y4z=-y_{1}-3 y_{2}-y_{3}-4 y_{4}
C) Maximize z=2y12y2y33y453z=-2 y_{1}-2 y_{2}-y_{3}-3 y_{4} \leq-53
D) Maximize z=y1y2y3y427z=-y_{1}-y_{2}-y_{3}-y_{4} \leq-27

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions