Solved

Convert the Objective Function into a Maximization Function w=2y1+y2+3y3\mathrm{w}=2 \mathrm{y}_{1}+\mathrm{y}_{2}+3 \mathrm{y}_{3}

Question 130

Multiple Choice

Convert the objective function into a maximization function.
-Minimize
w=2y1+y2+3y3\mathrm{w}=2 \mathrm{y}_{1}+\mathrm{y}_{2}+3 \mathrm{y}_{3}
Subject to: 3y1+2y2+y3563 \mathrm{y}_{1}+2 \mathrm{y}_{2}+\mathrm{y}_{3} \geq 56
y2+y324\mathrm{y} 2+\mathrm{y} 3 \geq 24
2y1+y2302 \mathrm{y}_{1}+\mathrm{y}_{2} \geq 30
y10,y20,y30\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0, \mathrm{y}_{3} \geq 0


A) Maximize z=y2y324z=-y_{2}-y_{3} \leq 24
B) Maximize z=2y1y23y3z=-2 y 1-y 2-3 y 3
C) Maximize z=2y1+y2+3y3y4z=2 y 1+y 2+3 y 3-y_{4}
D) Maximize z=2y1y230z=-2 y_{1}-y_{2} \leq 30

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions