Solved

Provide an Appropriate Response Also, Explain What the Fraction n!(nx)!x!\frac{n !}{(n-x) ! x !}

Question 39

Essay

Provide an appropriate response.
-Identify each of the variables in the Binomial Probability Formula.
P(x)=n!(nx)!x!pxqnx\mathrm{P}(\mathrm{x})=\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{x}) ! \mathrm{x} !} \cdot \mathrm{p}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}}
Also, explain what the fraction n!(nx)!x!\frac{n !}{(n-x) ! x !} computes.

Correct Answer:

verifed

Verified

n is the fixed number of trials, x is th...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions