Solved

Solve the Problem C(x)C(x) Be the Cost Function And R(x)R(x) The Revenue Function

Question 77

Multiple Choice

Solve the problem.
-Le t C(x) C(x) be the cost function and R(x) R(x) the revenue function. Compute the marginal cost, marginal revenue, and the marginal profit functions.
C(x) =0.0003x30.036x2+300x+10,000C(x) =0.0003 x^{3}-0.036 x^{2}+300 x+10,000
R(x) =350xR(x) =350 x


A) C(x) =0.0009x2+0.072x+300C^{\prime}(x) =0.0009 x^{2}+0.072 x+300
R(x) =350\mathrm{R}^{\prime}(\mathrm{x}) =350
P(x) =0.0009x2+0.072x+50P^{\prime}(x) =0.0009 x^{2}+0.072 x+50
B) C(x) =0.0009x20.072x+300C^{\prime}(x) =0.0009 x^{2}-0.072 x+300
R(x) =350\mathrm{R}^{\prime}(\mathrm{x}) =350
P(x) =0.0009x20.072x50P^{\prime}(x) =0.0009 x^{2}-0.072 x-50
C) C(x) =0.0009x20.072x+300C^{\prime}(x) =0.0009 x^{2}-0.072 x+300
R(x) =350\mathrm{R}^{\prime}(\mathrm{x}) =350
P(x) =0.0009x2+0.072x+50P^{\prime}(x) =-0.0009 x^{2}+0.072 x+50

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions