Solved

Solve the Problem L\mathrm{L} (In Henries) Is Given By i=1 LVdt\mathrm{i}=\frac{1}{\mathrm{~L}} \int \mathrm{Vdt}

Question 136

Multiple Choice

Solve the problem.
-The current (in amperes) in an inductor of inductance L\mathrm{L} (in henries) is given by i=1 LVdt\mathrm{i}=\frac{1}{\mathrm{~L}} \int \mathrm{Vdt} , where V\mathrm{V} is the voltage (in volts) and t\mathrm{t} is the time (in seconds) . Find a formula for i\mathrm{i} , if V=7t(t24) \mathrm{V}=7 \mathrm{t}\left(\mathrm{t}^{2}-4\right) .


A) i=L(74(t24) ) +C\mathrm{i}=\mathrm{L}\left(\frac{7}{4}\left(\mathrm{t}^{2}-4\right) \right) +\mathrm{C}
B) i=L(74(t24) 2) +Ci=\mathrm{L}\left(\frac{7}{4}\left(t^{2}-4\right) ^{2}\right) +C
C) i=1L(74(t24) 2) +Ci=\frac{1}{L}\left(\frac{7}{4}\left(t^{2}-4\right) ^{2}\right) +C
D) i=1 L(74(t24) ) +C\mathrm{i}=\frac{1}{\mathrm{~L}}\left(\frac{7}{4}\left(\mathrm{t}^{2}-4\right) \right) +\mathrm{C}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions