Solved

Find the Particular Solution of the Differential Equation xdydx+5y=x2;y=12x \frac{d y}{d x}+5 y=x^{2} ; y=12

Question 193

Multiple Choice

Find the particular solution of the differential equation.
- xdydx+5y=x2;y=12x \frac{d y}{d x}+5 y=x^{2} ; y=12 when x=2x=2


A) y=8x23x3y=\frac{8}{x^{2}}-\frac{3}{x^{3}}
B) y=x27+25607x5y=\frac{x^{2}}{7}+\frac{2560}{7 x^{5}}
C) y=x27+2560x5y=\frac{x^{2}}{7}+\frac{2560}{x^{5}}
D) y=7x2+7x5y=\frac{7}{x^{2}}+7 x^{5}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions