Solved

Nacirema Airlines Is Buying a Fleet of New Fuel-Efficient Planes \quad

Question 55

Multiple Choice

Nacirema Airlines is buying a fleet of new fuel-efficient planes. The HogJet and the LitheJet both meet their price and performance needs, and both planes meet EPA noise guidelines. However, the quieter plane is preferred. Each plane is flown through a typical takeoff and landing sequence 10 times, while remote sensors at ground level record the noise levels (in decibels) . The table below summarizes the sound level tests using Excel's default level of significance (? = 0.05) . \quad \quad  t-Test: Assuming Equal Variances \text { t-Test: Assuming Equal Variances } \quad \quad \quad \quad  t-Test: Assuming Unequal Variances \text { t-Test: Assuming Unequal Variances }

 takeJet  HogJet  Mean 80.336882.4669 Variance 0.71784.7385 Observations 1010 Pooled Variance 2.7282 Hypothesized Diff 0.0000 df 18 t Stat 2.8837 P(T eat)  one-tail 0.0049 t Critical one-tail 1.7341 P(T =-t)  two-tail 0.0099 t Critical two-tail 2.1009 takeJet  HogJet  Mean 80.336882.4669 Variance 0.71784.7386 Observations 1010 Hypothesized Diff 0 df 12t Stat 2.8837 P(T  ett )  one-tail 0.0069t Critical one-tail 1.7823P(T<=t)  two-tail 0.0137t Critical two-tail 2.1788\begin{array}{l}\begin{array} { lrr } &\text { takeJet } &\text { HogJet } \\\text { Mean } & 80.3368 & 82.4669 \\\text { Variance } & 0.7178 & 4.7385 \\\text { Observations } & 10 & 10 \\\text { Pooled Variance } & 2.7282 & \\\text { Hypothesized Diff } & 0.0000 & \\\text { df } & 18 \\\text { t Stat } & -2.8837 \\\text { P(T eat) one-tail } & 0.0049 \\\text { t Critical one-tail } & 1.7341 \\\text { P(T =-t) two-tail } & 0.0099 \\\text { t Critical two-tail } & 2.1009 &\end{array}\begin{array} { lrr} &\text { takeJet } &\text { HogJet } \\\text { Mean } & 80.3368 & 82.4669 \\\text { Variance } & 0.7178 & 4.7386 \\\text { Observations } & 10 & 10 \\\text { Hypothesized Diff } & 0 & \\\\\text { df } & 12 \\t \text { Stat } & -2.8837 \\\text { P(T } \text { ett ) one-tail } & 0.0069 \\t \text { Critical one-tail } & 1.7823 \\\mathrm{P}(\mathrm{T}<=\mathrm{t}) \text { two-tail } & 0.0137 \\\mathrm{t} \text { Critical two-tail } & 2.1788\end{array}\end{array}
In a left-tailed test comparing the means at ? = .05, we would:


A) not reject H0.
B) reject H0.
C) have insufficient information to make a decision.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions