Solved

A Campaign Manager for a Political Candidate Must Arrange the Shipment

Question 5

Multiple Choice

A campaign manager for a political candidate must arrange the shipment of 150 cartons of campaign buttons from three button producers to three campaign headquarters. The supplies and demands, and the per-carton transportation costs, are shown below:  A campaign manager for a political candidate must arrange the shipment of 150 cartons of campaign buttons from three button producers to three campaign headquarters. The supplies and demands, and the per-carton transportation costs, are shown below:   Which of the following is an objective function for the problem? A)   \operatorname { Min } 50 \mathrm { X } _ { 11 } + 50 \mathrm { X } _ { 12 } + 50 \mathrm { X } _ { 13 } + 20 \mathrm { X } _ { 31 } + 70 \mathrm { X } _ { 32 } + 60 \mathrm { X } _ { 33 }  B)   \operatorname { Min } 2 X _ { 11 } + 5 X _ { 12 } + 6 X _ { 13 } + 9 X _ { 21 } + 3 X _ { 22 } + 7 X _ { 23 } + X _ { 31 } + 8 X _ { 32 } + 4 X _ { 33 }  C)   \operatorname { Max } 2 X _ { 11 } + 5 X _ { 12 } + 6 X _ { 13 } + 9 X _ { 21 } + 3 X _ { 22 } + 7 X _ { 23 } + X _ { 31 } + 8 X _ { 32 } + 4 X _ { 33 }  D)   \operatorname { Max } 20 \mathrm { X } _ { 11 } + 70 \mathrm { X } _ { 12 } + 60 \mathrm { X } _ { 13 } + 50 \mathrm { X } _ { 31 } + 50 \mathrm { X } _ { 32 } + 50 \mathrm { X } _ { 33 }  E)  None of the choices. Which of the following is an objective function for the problem?


A)
Min50X11+50X12+50X13+20X31+70X32+60X33\operatorname { Min } 50 \mathrm { X } _ { 11 } + 50 \mathrm { X } _ { 12 } + 50 \mathrm { X } _ { 13 } + 20 \mathrm { X } _ { 31 } + 70 \mathrm { X } _ { 32 } + 60 \mathrm { X } _ { 33 }
B)
Min2X11+5X12+6X13+9X21+3X22+7X23+X31+8X32+4X33\operatorname { Min } 2 X _ { 11 } + 5 X _ { 12 } + 6 X _ { 13 } + 9 X _ { 21 } + 3 X _ { 22 } + 7 X _ { 23 } + X _ { 31 } + 8 X _ { 32 } + 4 X _ { 33 }
C)
Max2X11+5X12+6X13+9X21+3X22+7X23+X31+8X32+4X33\operatorname { Max } 2 X _ { 11 } + 5 X _ { 12 } + 6 X _ { 13 } + 9 X _ { 21 } + 3 X _ { 22 } + 7 X _ { 23 } + X _ { 31 } + 8 X _ { 32 } + 4 X _ { 33 }
D)
Max20X11+70X12+60X13+50X31+50X32+50X33\operatorname { Max } 20 \mathrm { X } _ { 11 } + 70 \mathrm { X } _ { 12 } + 60 \mathrm { X } _ { 13 } + 50 \mathrm { X } _ { 31 } + 50 \mathrm { X } _ { 32 } + 50 \mathrm { X } _ { 33 }
E) None of the choices.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions