Solved

Suppose You Wish to Explain Variation in Body Mass Index BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i }

Question 14

Multiple Choice

Suppose you wish to explain variation in body mass index (BMI) by variation in height (in inches) by estimating the model BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i }
And you suspect heteroskedasticity of the form Var(ε) =σ2 Height i4\operatorname { Var } ( \varepsilon ) = \sigma ^ { 2 } \text { Height } _ { i } ^ { 4 }
) You could perform Weighted Least Squares by estimating the model


A) BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i } .
B)  BMI i/ Height i=β0(1/ Height i) +β1\text { BMI } _ { i } / \text { Height } _ { i } = \beta _ { 0 } \left( 1 / \text { Height } _ { i } \right) + \beta _ { 1 } .
C) BMIi/ Height i2=β0(1/ Height i2) +β1(1/ Height i) B M I _ { i } / \text { Height } _ { i } ^ { 2 } = \beta _ { 0 } \left( 1 / \text { Height } _ { i } ^ { 2 } \right) + \beta _ { 1 } \left( 1 / \text { Height } _ { i } \right) .
D) 1=β0(1/BMIi) +β1 Height i/BMIi1 = \beta _ { 0 } \left( 1 / B M I _ { i } \right) + \beta _ { 1 } \text { Height } _ { i } / B M I _ { i } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions