Solved

SUMMARY OUTPUT  Figure 4.1\text { Figure } 4.1 -Suppose You Are Given the Excel Output in You Would

Question 11

Multiple Choice

SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.216543528 R square 0.046891099 Adjusted R Square 0.042101608 Standard Error 1155621.367 Observations 201\begin{array}{lc}\hline \text { Regression Statistics } & \\\hline \text { Multiple R } & 0.216543528 \\\text { R square } & 0.046891099 \\\text { Adjusted R Square } & 0.042101608 \\\text { Standard Error } & 1155621.367 \\\text { Observations } & 201 \\\hline\end{array}

 ANOVA  of SS MS  F  Significance F Regression 11.30747E+131.30747E+139.7904119750.00201776 Residual 1992.65757E+141.33546E+12 Total 2002.78831E+14\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & \text { of } & S S & \text { MS } & \text { F } & \text { Significance } F \\\hline \text { Regression } & 1 & 1.30747 E+13 & 1.30747 E+13 & 9.790411975 & 0.00201776 \\\text { Residual } & 199 & 2.65757 E+14 & 1.33546 E+12 & \\\text { Total } & 200 & 2.78831 E+14 & & \\\hline\end{array}\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 7,773,135.5582,867,254.7732.7110027450.00729436413,427,237,2402,119,033.877 Yards Per Drive 30,737.5239,823.5483.1289634030.0020177611,365.91350,109.132\begin{array}{lcccccc}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -7,773,135.558 & 2,867,254.773 & -2.711002745 & 0.007294364 & -13,427,237,240 & -2,119,033.877 \\\text { Yards Per Drive } & 30,737.523 & 9,823.548 & 3.128963403 & 0.00201776 & 11,365.913 & 50,109.132 \\\hline\end{array}

 Figure 4.1\text { Figure } 4.1
-Suppose you are given the Excel output in You would conclude that the estimated sample regression function explains


A) 21.65 percent of the total variation in annual earnings.
B) 4.69 percent of the total variation in annual earnings.
C) 4.21 percent of the total variation in annual earnings.
D) 0.02 percent of the total variation in annual earnings.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions