Solved

The Manufacturer of a Light Fixture Believes That the Dollars

Question 137

Essay

The manufacturer of a light fixture believes that the dollars spent on advertising,the price of the fixture,and the number of retail stores selling the fixture in a particular month influence the light fixture sales.The manufacturer randomly selects 10 months and collects the following data:  Sales  Advertising  Price  # of stores 41204014240603594020460508058150106806040610070207827060810180309110904010\begin{array} { l l l l } \text { Sales } & \text { Advertising } & \text { Price } & \text { \# of stores } \\41 & 20 & 40 & 1 \\42 & 40 & 60 & 3 \\59 & 40 & 20 & 4 \\60 & 50 & 80 & 5 \\81 & 50 & 10 & 6 \\80 & 60 & 40 & 6 \\100 & 70 & 20 & 7 \\82 & 70 & 60 & 8 \\101 & 80 & 30 & 9 \\110 & 90 & 40 & 10\end{array} The sales are in thousands of units per month,the advertising is given in hundreds of dollars per month,the price is the unit retail price for the particular month.Using this data,the following computer output is obtained.
The regression equation is
Sales = 31.0 + 0.820 Advertising - 0.325 Price + 1.84 Stores  Predictor  Coef  StDev  T  P  Constant 30.9927.7284.010.007 Advertising 0.82020.50231.630.154 Price 0.325020.089353.640.011 Stores 1.8413.8550.480.650\begin{array} { l l l l l } \text { Predictor } & \text { Coef } & \text { StDev } & \text { T } & \text { P } \\\text { Constant } & 30.992 & 7.728 & 4.01 & 0.007 \\\text { Advertising } & 0.8202 & 0.5023 & 1.63 & 0.154 \\\text { Price } & - 0.32502 & 0.08935 & - 3.64 & 0.011 \\\text { Stores } & 1.841 & 3.855 & 0.48 & 0.650\end{array} S = 5.465R-Sq = 96.7%R-Sq(adj)= 95.0%
Analysis of Variance  Source  DF  SS  MS  F  P  Regression 35179.21726.457.810.000 Residual Error 6179.229.9 Total 95358.4\begin{array} { l l l l l l } \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 3 & 5179.2 & 1726.4 & 57.81 & 0.000 \\\text { Residual Error } & 6 & 179.2 & 29.9 & & \\\text { Total } & 9 & 5358.4 & & &\end{array}
-Calculate the 95% prediction interval for this point estimate.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions