Solved

The Kurtosis of a Distribution Is Defined as Follows:
A) E[(Yμγ)4]σγ4\frac { E \left[ \left( Y - \mu _ { \gamma } \right) ^ { 4 } \right] } { \sigma _ { \gamma } ^ { 4 } }

Question 49

Multiple Choice

The kurtosis of a distribution is defined as follows:


A) E[(Yμγ) 4]σγ4\frac { E \left[ \left( Y - \mu _ { \gamma } \right) ^ { 4 } \right] } { \sigma _ { \gamma } ^ { 4 } }
B) E[(Y4μy4) ]σy2\frac { E \left[ \left( Y ^ { 4 } - \mu _ { y } ^ { 4 } \right) \right] } { \sigma _ { y } ^ { 2 } }
C)  skewness vat(Y) \frac { \text { skewness } } { \operatorname { vat } ( Y ) }
D) E[(Y - μγ{ } ^ { \mu } \gamma 4)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions