Solved

The Textbook Formula for the Variance of the Discrete Random σY2=i=1k(yiμY)2pi\sigma _ { Y } ^ { 2 } = \sum _ { i = 1 } ^ { k } \left( y _ { i } - \mu _ { Y } \right) ^ { 2 } p _ { i }

Question 62

Essay

The textbook formula for the variance of the discrete random variable Y is given as σY2=i=1k(yiμY)2pi\sigma _ { Y } ^ { 2 } = \sum _ { i = 1 } ^ { k } \left( y _ { i } - \mu _ { Y } \right) ^ { 2 } p _ { i } Another commonly used formulation is σy2=i=1kyi2piμy2\sigma _ { y } ^ { 2 } = \sum _ { i = 1 } ^ { k } y _ { i } ^ { 2 } p _ { i } - \mu _ { y } ^ { 2 } Prove that the two formulas are the same.

Correct Answer:

verifed

Verified

blured image Moving the summation sign thr...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions