Solved

When Testing for Differences of Means, the T-Statistic T = YˉmYˉwSE(YˉmYˉw)\frac { \bar { Y } m - \bar { Y } w } { S E ( \bar { Y } m - \overline { \bar { Y } w } ) }

Question 11

Multiple Choice

When testing for differences of means, the t-statistic t = YˉmYˉwSE(YˉmYˉw) \frac { \bar { Y } m - \bar { Y } w } { S E ( \bar { Y } m - \overline { \bar { Y } w } ) } , where SE[YˉmYˉW) =sm2nm+sw2nwS E \left[ \bar { Y } _ { m } - \bar { Y } _ { W } \right) = \sqrt { \frac { s _ { m } ^ { 2 } } { n _ { m } } + \frac { s _ { w } ^ { 2 } } { n _ { w } } } has


A) a student t distribution if the population distribution of Y is not normal
B) a student t distribution if the population distribution of Y is normal
C) a normal distribution even in small samples
D) cannot be computed unless nwn _ { w } = nmn _ { m }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions