Solved

In a Simple Regression with an Intercept and a Single (TSS=i=1n(YiYˉ)2)\left( T S S = \sum _ { i = 1 } ^ { n } \left( Y _ { i } - \bar { Y } \right) ^ { 2 } \right)

Question 18

Essay

In a simple regression with an intercept and a single explanatory variable, the variation in Y (TSS=i=1n(YiYˉ)2)\left( T S S = \sum _ { i = 1 } ^ { n } \left( Y _ { i } - \bar { Y } \right) ^ { 2 } \right) can be decomposed into the explained sums of squares (ESS=i=1n(Y^iYˉ)2)\left( E S S = \sum _ { i = 1 } ^ { n } \left( \hat { Y } _ { i } - \bar { Y } \right) ^ { 2 } \right) and the sum of squared residuals (SSR=i=1nu^i2=i=1n(YiY^)2)\left( \operatorname { SSR } = \sum _ { i = 1 } ^ { n } \hat { u } _ { i } ^ { 2 } = \sum _ { i = 1 } ^ { n } \left( Y _ { i } - \hat { Y } \right) ^ { 2 } \right) (see, for example, equation (4.35)in the textbook).
Consider any regression line, positively or negatively sloped in {X,Y} space. Draw a horizontal line where, hypothetically, you consider the sample mean of Y (=Yˉ)( = \bar { Y } ) to be. Next add a single actual observation of Y.
In this graph, indicate where you find the following distances: the
(i)residual
(ii)actual minus the mean of Y
(iii)fitted value minus the mean of Y

Correct Answer:

verifed

Verified

blured image_TB5979_11...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions