Solved

In the Multiple Regression Model with Two Explanatory Variables Yi=P0+p1X1i+ρ2X2i+uiY _ { i } = \mathcal { P } _ { 0 } + \mathcal { p } _ { 1 } X _ { 1 i } + \mathcal { \rho } _ { 2 } X _ { 2 i } + u _ { i }

Question 27

Essay

In the multiple regression model with two explanatory variables Yi=P0+p1X1i+ρ2X2i+uiY _ { i } = \mathcal { P } _ { 0 } + \mathcal { p } _ { 1 } X _ { 1 i } + \mathcal { \rho } _ { 2 } X _ { 2 i } + u _ { i } the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi = Zi - Zˉ\bar { Z } ): β^0=Yˉβ^1Xˉ1β^2Xˉ2\hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } β^2=i=1nyix2ii=1nx1i2i=1nyix1ii=1nx1ix23i=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 23 } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate ( X1iX _ { 1 i } )and the saving rate ( X2iX _ { 2 i } )(average investment share of GDP from 1980 to 1990)on GDP per worker (relative to the U.S.)in 1990. The various sums needed to calculate the OLS estimates are given below: i=1nYi\sum _ { i = 1 } ^ { n } Y _ { i } = 33.33; i=1nX1i\sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025; i=1nX2i\sum _ { i = 1 } ^ { n } X _ { 2 i } = 17.313 i=1nyi2\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103; i=1nx1i2\sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122; i=1nx2i2\sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422 i=1nyix1i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = -0.2304; i=1nyix2i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676; i=1nx1ix2i\sum _ { i = 1 } ^ { n } x _ { 1 \mathrm { i } } x _ { 2 i } = -0.0520
(a)What are your expected signs for the regression coefficient? Calculate the coefficients and see if their signs correspond to your intuition.
(b)Find the regression R2R ^ { 2 } , and interpret it. What other factors can you think of that might have an influence on productivity?

Correct Answer:

verifed

Verified

(a)You expect blured image < 0 and blured image > 0 with no prio...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions