Solved

The OLS Formula for the Slope Coefficients in the Multiple

Question 52

Essay

The OLS formula for the slope coefficients in the multiple regression model become increasingly more complicated, using the "sums" expressions, as you add more regressors. For example, in the regression with a single explanatory variable, the formula is i=1n(XiXˉ)(YiXˉ)i=1n(XiXˉ)2\frac { \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar{ X } \right) \left( Y _ { i } - \bar { X } \right) } { \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar { X } \right) ^ { 2 } } whereas this formula for the slope of the first explanatory variable is β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } )
in the case of two explanatory variables. Give an intuitive explanations as to why this is the case.

Correct Answer:

verifed

Verified

The additional terms take into account t...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions