Solved

In the Multiple Regression Model with Two Explanatory Variables
Yi Zˉ\bar { Z }

Question 4

Essay

In the multiple regression model with two explanatory variables
Yi = ?0 + ?1X1i + ?2X2i + ui
the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi = Zi - Zˉ\bar { Z } ): β^0=Yˉβ^1Xˉ1β^2Xˉ2\hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } β^2=i=1nyix1ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)and the saving rate (X2i)(average investment share of GDP from 1980 to 1990)on GDP per worker (relative to the U.S.)in 1990. The various sums needed to calculate the OLS estimates are given below: i=1nYi\sum _ { i = 1 } ^ { n } Y _ { i } = 33.33; i=1nX1i\sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025; i=1nX2i\sum _ { i = 1 } ^ { n } X _ { 2 i } =17.313 i=1nyi2\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103; i=1nx1i2\sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122; i=1nx2i2\sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422 i=1nyix1i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304; i=1nyix2i\sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676; i=1nx1ix2i\sum _ { i = 1 } ^ { n } x _ { 1 \mathrm { i } } x _ { 2 i } = -0.0520
The heteroskedasticity-robust standard errors of the two slope coefficients are 1.99 (for population growth)and 0.23 (for the saving rate). Calculate the 95% confidence interval for both coefficients. How many standard deviations are the coefficients away from zero?

Correct Answer:

verifed

Verified

The 95% confidence interval for the popu...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions